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Abstract—Coherent propagation of polarized millimeter waves through falling nonspheri-
cal hydrometeors is considered on the basis of Foldy’s approximation. It is assumed that
the distribution of hydrometeors over orientations is locally axially symmetric, the axis
of symmetry being given by the local direction of air flow around the hydrometeors. An
efficient rigorous method is described to compute the orientationally averaged forward-
scattering amplitude matrix. This method is based on Waterman’s T-matrix approach
and fully exploits rotational properties of the T-matrix. First, the T-matrix is analytically
averaged over hydrometeor orientations in the local coordinate system with the Z -axis
along the direction of local air flow. Then, the elements of the forward-scattering ampli-
tude matrix with respect to the local and laboratory coordinate systems are calculated
via simple analytical expressions. Analytical solutions of the propagation equation for
the coherent electric field are discussed. Cross polarization of the coherently transmitted
linearly polarized wave is computed for canting spheroidal raindrops at 34.8 GHz, and the
effects of the scatter of raindrop canting angles on the cross polarization are discussed.
In particular, it is shown that the scatter of raindrop canting angles reduces the cross
polarization considerably as compared with that of equioriented raindrops.

1. INTRODUCTION

Falling raindrops and other hydrometeors have, in general, nonspherical shape and
are given preferred orientations due to gravitational and aerodynamical forces.
Furthermore, they exist within a wide spectrum of sizes extending up to a few
millimeters. Thus, to calculate coherent propagation of millimeter waves in rain
and snow media, one has to consider scattering by partially oriented nonspherical
particles with size parameters in the resonance region. First, the orientationally
averaged forward-scattering amplitude matrix must be computed at all points of
the wave path, and then the corresponding propagation equation for the coherent
electric field must be solved to compute the parameters of the transmitted sig-
nal (for reviews of the relevant literature, we refer the reader to Oguchi [1] and
Olsen [2]).

From general physical considerations, it is obvious that the distribution of
falling nonspherical hydrometeors over orientations is always axially symmetric,
the axis of symmetry being given by the local direction of air flow around the
hydrometeors. The direction of the air flow is equal to the vector addition of the
vertical component due to the fall of the particles and the horizontal component
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due to the vertical gradient of the wind speed [3]. An additional factor that must
be taken into account is the small oscillating component of the horizontal wind
velocity [4]. While the mean canting angle is that of Brussaard [3] and is specified
by the steady component of the horizontal wind velocity, the small oscillating
component is responsible for the angular distribution of hydrometeor orientations
about this mean angle.

This physical model of hydrometeor canting together with usual assumption
of rotationally symmetric hydrometeor shape dictate the use of the following
three coordinate systems to calculate the coherent propagation of electromagnetic
waves. The first one, hereafter referred to as the laboratory coordinate system, is
used to specify the experimental conditions and is chosen such that the Z -axis
coincides with the vertical direction. The second one, hereafter referred to as the
local coordinate system, is chosen such that the Z -axis is coincident with the
direction of the local air flow around the hydrometeors. Thus, the Z -axis of the
local coordinate system is the axis of symmetry of the local orientation distribu-
tion of the hydrometeors. The third one, hereafter referred to as the body frame,
is fixedly attached to the rotationally symmetric hydrometeor and is chosen such
that the Z -axis coincides with the axis of particle symmetry. Thus, orientation
of the hydrometeor with respect to the local coordinate system may be specified
by the Eulerian angles of rotation (a, 3,%) [5,6], and the orientation distribution
of the hydrometeors is given by a function of only one Eulerian angle 3.
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Figure 1. Laboratory (XY Z), local (X'Y'Z’), and body (X"Y"Z") ref-
erence frames. The axis Z coincides with the vertical direction.
The axis Z' coincides with the direction of the local air flow
around the hydrometeors. The axis Z" coincides with the axis
of hydrometeor symmetry.
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The body frame is ideally suited to compute single scattering on a rotationally
symmetric particle by using Waterman’s T-matrix approach [7]. Then, the local
coordinate system is very convenient in computing the orientationally averaged T-
matrix, because the orientation distribution is axially symmetric, and rotational
properties of the T-matrix can fully be taken into account [6]. After computing
the orientationally averaged T-matrix, the forward-scattering amplitude matrix
can easily be computed for any angle between the Z -axis of the local coordinate
system and the direction of wave propagation. This forward-scattering ampli-
tude matrix, computed with respect to the local coordinate system, can easily
be recomputed with respect to the laboratory coordinate system. Finally, this
laboratory coordinate system may be used to solve the propagation equation for
the coherent electric field.

In this paper, we describe an efficient rigorous procedure to calculate the coher-
ent propagation of polarized millimeter waves through partially aligned, nonspher-
ical, resonance hydrometeors. In Section 2, an analytical method for computing
the orientationally averaged forward-scattering amplitude matrix is outlined. This
method is based on the T-matrix approach and fully exploits rotational properties
of the T-matrix, as derived in [6]. First, the T-matrix is analytically averaged over
hydrometeor orientations in the local coordinate system, and then this orientation-
ally averaged T-matrix is used to compute the elements of the forward-scattering
amplitude matrix with respect to the local and laboratory coordinate systems via
simple analytical expressions. In Section 3, analytical solutions of the propagation
equation are briefly discussed. In Section 4, parameters of the transmitted linearly
polarized wave are computed for a number of scattering models, and the effects
of the scatter of raindrop canting angles on the cross polarization are discussed.

We note here that the problem considered is mathematically identical to the
problem of computing interstellar extinction and polarization due to nonspherical
dust grains partially aligned in cosmic magnetic fields. That astrophysical problem
was discussed in detail in our recent paper [8], and the results of that publication
will be used in this study.

2. CALCULATION OF THE ORIENTATIONALLY AVERAGED FORWARD-
SCATTERING AMPLITUDE MATRIX

In this paper, we exploit definitions and notations of Ishimaru and Yeh [9]. To
calculate the parameters of the coherently transmitted wave one has to solve
(analytically or numerically) the propagation equation

d
(B = [M][Ed M

(Ev)
(En)
electric field propagating in the direction 38 (subscripts v and h label the vertical
and horizontal components, respectively) the pathlength element ds is measured
along 3, and angle brackets denote the ensemble average. The 2 x 2 matrix [M]

(the factor expliks — iwt] is omitted). Here, [E.] = [ ] is the coherent
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is given by
[M] = i2mpk™" ([£(3,9))) (2)

where [f(3,3)] is the forward-scattering amplitude matrix, k is the free-space
wavenumber, and p is the number of particles per unit volume.

Differential equation (1) may be solved analytically or by using well-known
computational procedures, which usually presents no difficulties. Thus the prin-
cipal problem is to calculate the elements of the ensemble-averaged forward-
scattering amplitude matrix. Although calculation of the ensemble-averaged
quantities implies, in general, integration over the size, shape, refractive index,
and orientation distributions, in this paper we shall discuss only the orientational
averaging. All the other averages can be computed by using straightforward nu-
merical integrations. In Section 2.A, we calculate the orientationally averaged
forward-scattering amplitude matrix with respect to the local coordinate system.
In Section 2.B, transition to the laboratory coordinate system is considered.

A. Local Coordinate System

For calculating the elements of the amplitude scattering matrix f1°¢(3,3')] for
a nonspherical particle in a fixed orientation with respect to the local coordinate
system, we use the T-matrix approach as outlined by Tsang et al. [6]. The nota-
tions and definitions used here are those adopted in [8,10] and slightly differ from
those of Tsang et al. In terms of the T-matrix elements, the amplitude scattering
matrix is expressed as [6, 7

[floc(0,¢; 01’¢I)] Z E Z Z n/—n— 1( 1)m m’

n=1n'=1 m=—nm'=—n’

X dnd,y expli(mé — m'¢')]
x { [ T8 e Crn(8) + T2 w1 Bmn(6)] T ()

+ [ mnm'n /Cmn(6) + T, nm n,zan(g)] m’n’(al)/z} (3)

where dyadic notations are used, the asterisk denotes the conjugate complex value,
Tmnm,n, are elements of the T-matrix calculated with respect to the local coor-
dinate system,

Brnn(®) = 8 55(6) + B s i (8) o)

Crnn(6) = B 25 (6) ~ B :n(8) (5)

sin 0

= [t ®
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and d7 ,(6) are Wigner d-functions [5]. To use (3) to calculate the elements
of the orientationally averaged forward-scattering amplitude matrix, we are to
average the T-matrix over all hydrometeor orientations. Let (a,f3,v) be the
Eulerian angles of rotation that transform the local coordinate system into the
body frame of a hydrometeor [5]. Since orientation distribution of hydrometeors
is axially symmetric with respect to the Z -axis of the local coordinate system,
we have [8]

- 1 27 e . 27 -
(TB i) = 22 /0 da /0 dp sin B p(B) /0 dyT? Q)
with [6]
M ! ~
T = 2 Dl BN TH  Dhm(aBy)  (8)
my =M
where ﬁ, p(pB) is a probability density function normalized as
™
| @8 sinpp() =1 (9)
Dy (a,B,7) are Wigner D -functions given by [5]
Dy (@, B,7) = exp (~ima) dy, /(B) exp (—im'y) (10)
f’r’:l‘ll — elements of the T-matrix of the rotationally symmetric hydrometeor

calculated with respect to the body frame [6], and M = min(n,n’). By use of the
Clebsch-Gordan expansion [5]

n+n’
dpmy (B) dpmy (B) = (=1)™™ %" (nmn' — m|n10) dg}(8)
ny=|n—n'|
X (nmln' - m1|n10> (11)

where (nmn'm’|nym;) = CP2™) , are Clebsch-Gordan coefficients, and taking

into account the symmetry properties

T = (CVP IO (12)
and ,
(n —mn'm|n10) = (=1)"*"*™ (nmn' — m|n;0) (13)
we easily derive from the above formulae (8]
Pq — Pq
<Tmnm’n’> - 6mm'Tmnn’ (14)
with
n+n’ ,
Th = (-1)" z [1 + (-1t +n1+p+q] (nmn' — m|n;0)
n1=[n—n'|

M
1 ~
X Pny Z (=)™ [1 - 56,,,10] (nmin’ — mj|n,0) Tf:lqlnmln, (15)

mp=0
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where 8mn is the Kronecker delta and
©
pn = /0 48 sin B p(8) d3(B) (16)

In other words, the quantities pn are coefficients in the expansion of the function
p(B) in Legendre polynomials Pn(cos 8) = dfjy(B) :

oo

2n+1
p(B) = Y ~——PnPn(cos ) (17)
n=0
From (12),(13), and (15), one has
— ~+q P
sznnn’ = (-1 quqnn’ (18)
By using (3)-(6), (14), (18), and the symmetry relation
g (8) = (1) (6) (19)

we derive for the elements of the orientationally averaged forward-scattering am-
plitude matrix with respect to the local coordinate system
o oo M

(e(3,8)) =32 3" D2 (2= 6m0) Buw

n=1n'=1m=0

m2 , m d
x [Tu 5 dom( OV (6) + Tty 55 dorn(6) g5 m(6)

LU
mnn si

d m d d .t

21 22

+Tmnn’2'9_d8m(9) Singdgm(a) + Tmnn"_{édgm(o)@dgm(e) (20)
(£l53,9)) = (fsa,9) =0 (21)

oo oo M
<f1131c(§"§)> = Z Z 2(2 - 50m) ﬂnn'
n=1n'=1m=0

d d d m
o [T i (O) S o) + T ) g5 )

mnn/ E mnn' g

2 ™ m oS gy 4 T2 m? dr (6)d®. (6
+ SIW Om( )E Om( )+ mnn’sin_29 Om( ) Om( ) (22)

mnn’

where
(2n + 1)(2n’ +1) 11/
n(n+1)n/(n' +1)

Note that, due to the axial symmetry, the matrix [( floc(3,5))] does not depend
on the azimuthal angle ¢.
Thus, to calculate the orientationally averaged forward-scattering amplitude

matrix with respect to the local coordinate system ([f loc(3,3)]) one may use (15)
and (20)~(22).

’
ﬂnn’ — k—l " —-n—1

(23)
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Formulae for computing the matrix [T] for rotationally symmetric homoge-
neous particles are given in Appendix C of Tsang et al. [6]. Numerical aspects of
the T-matrix computations are discussed in detail in [11]. Convenient formulae
for computing the Clebsch-Gordan coefficients, appearing in (15), and the angular
functions, appearing in (20) and (22), are given in Appendices A and B or [8].

The use of the above formulae is computationally very efficient. As was shown
in [8], calculation of the orientationally averaged T-matrix and the forward-
scattering amplitude matrix ([f1°°(3,3)]) requires only a small fraction of the
time that is necessary for calculating the particle T-matrix with respect to the
body frame, i.e., the matrix [T] In other words, computations for axially sym-
metric onentatlon distributions of nonspherical hydrometeors require practically
the same computer time as computations for equioriented hydrometeors.

B. Transition to the Laboratory Coordinate System

Denote by (3,Z) the plane through the vector 3 and the Z -axis of the lab-
oratory coordinate system and by (3, Z,.) the plane through the vector 3 and
the Z -axis of the local coordinate system. Assume that the orientationally aver-
aged forward-scattering amplitude matrix ([f1°¢(3, 3)]) is known. Let Q be the
angle of the rotation of the plane (3, Z) around the vector 3 that transforms this
plane into the plane (3,Z),.). The angle Q is measured in the clockwise direc-
tion, when looking in the direction of wave propagation. Then we have for the
forward-scattering amplitude matrix with respect to the laboratory coordinate
system

(£, = [G-2)] ([£6,9)] ) 6] (24)

where Q ..
cos sin
[G(D)] = [ —sin) cosQ) (25)
3. ANALYTICAL SOLUTIONS OF THE PROPAGATION EQUATION
General solution of (1) for arbitrary inhomogeneous media is given by
[Ee(s)] = [T(s)] [Ec(0)] (26)
Here, [T(s)] is a 2 x 2 matrix which satisfies the initial condition
10
ORI (27)

Analytically, the matrix [T(s)] may be written as a matricant [12]. Specifically,
let us divide the interval [0,s] into N equal subintervals [s,_1,sn], n = 1, N,
with s9 =0,sy =s and sp — $p_1 = As = s/N. Then

(T(s)] = ngnoo{ [G(~ )] exp “M"”]N As] G(@w)]

(G- exp | 1] ] G0y
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x [6(-)] exp | [M], as] (61521} (29)

where the angles of rotation are defined in Section 2.B. Since the matrices [M],
for locally axially symmetric media are diagonal, we have

o]l A exp [(M,l,‘,’,c)n As] 0 2
e[ [0 8.] - Sl e
0 exp |( hh )n As
For homogeneous media, we have from the above equations

[T(s)] = [G(-0)] exp { [M"°] s} [G(@)] (30)

with
Tyu(s) = cos® Qexp (MI9¢s) + sin Q exp (M,lslcs) (31)
Tyh(8) = Thy(s) = cos Qsin Q [exp (M,]ft’,cs) — exp (M,lﬁfs)] (32)
Tin(s) = sin? Q exp (M1°s) + cos® Q exp (M,l:;lcs) (33)

4. NUMERICAL RESULTS

In this section, we report illustrative numerical results for monodisperse oblate
spheroidal raindrops at 34.8 GHz. The ratio of the semi-axes of the spheroid is
1.6, the radius of the equal-volume sphere is 3.5 mm, and the refractive index is
5.048 + 2.794 ;. We calculate the cross-polar discrimination factors XPDy and
XPDpg given by

XPDy/(s) = 20log|Typ(s) /Tvu(s)| (34)
and
XPDpy(s) = 20log|Typ(s) /Thn(s)] (35)

The scattering medium is homogeneous, and the elements of the matrix [T'(s)] are
computed via (31)-(33). The propagation path is horizontal, and the axis of the
orientation distribution of the raindrops is perpendicular to the direction of wave
propagation and is 2 degrees from the vertical with = 5° and 10°. To model
partial alignment of the raindrops, we use the simplest distribution function

P(B) = 5 + Pofcos ) = 5 cos? (36)

The number density p of the monodisperse raindrops is set at an arbitrary value
of 10 particles/m 3.
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Figure 2. Cross-polar discriminations XPDy (solid lines) and XPDpy
(dashed lines) versus distance for canting spheroidal raindrops
with @ = 5°. The lower curves are for partially aligned rain-
drops, and the upper curves are for equioriented raindrops.
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Figure 3. Cross-polar discriminations XPDy (solid lines) and XPDy
(dashed lines) versus distance for canting spheroidal raindrops
with Q = 10°. The lower curves are for partially aligned rain-
drops, and the upper curves are for equioriented raindrops.
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Figures 2 and 3 show the relation between the cross polarization and prop-
agation path length for partially aligned raindrops. For comparison, analogous
computations are shown for equioriented raindrops. From these figures, the fol-
lowing obvious conclusions can be made.

(a) At small mean canting angles 2, the cross polarization increases with in-
crease of 2, XPDy being smaller than XPDpy.

(b) Difference between XPDy and XPDpy for partially aligned hydrometeors
is smaller than that for equioriented raindrops.

(c) At large distances, XPDy saturates (much) faster than XPDp for both
partially aligned and equioriented hydrometeors (cf. Oguchi [1]).

(d) The scatter of the raindrop canting angles reduces the cross polarization
considerably as compared with that for equioriented raindrops. The same
conclusion was made earlier by Oguchi [13] who used a simplified model of
raindrop orientation distribution.

5. CONCLUSIONS

The problem of coherent transmission of polarized millimeter waves through
falling nonspherical hydrometeors was studied. A realistic physical model of hy-
drometeor canting was used, according to which the distribution of falling hy-
drometeors over orientations is locally axially symmetric, the axis of symmetry
being given by the local direction of air flow around the hydrometeors. Water-
man’s T-matrix approach was used to calculate analytically the orientationally
averaged forward-scattering amplitude matrix. The propagation equation for the
coherent electric field was solved to compute the cross polarization or the trans-
mitted wave. The computations were performed for partially aligned and equior-
iented spheroidal raindrops at 34.8 GHz. These computations evidently shown
that possible scatter of hydrometeor canting angles can significantly affect the
cross polarization of the transmitted signal and must be taken into account in
interpreting the experimental data.
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